/Meta1850 1872 0 R endobj 45.249 0 0 45.413 441.9 497.609 cm Q stream 0.267 0 l /F1 0.217 Tf stream 45.214 0 0 45.413 81.303 512.665 cm ET 0.015 w q /Meta1963 Do 0000044928 00000 n 0000549103 00000 n 0.118 0.366 m /BBox [0 0 9.523 0.314] q /Meta1727 1749 0 R 0.232 0.047 l Q q /Length 69 0.015 w >> /BBox [0 0 0.263 0.283] /Meta2033 Do /FormType 1 0 g >> 1 g endobj /Type /XObject /Resources << endobj stream Q 0 0 l q 0000660800 00000 n /Meta2146 Do /F1 6 0 R 0000712118 00000 n /BBox [0 0 1.547 0.33] S Q [(9)] TJ 1.547 -0.003 l /Subtype /Form /Meta1732 Do endstream /Subtype /Form Work Outside � In ( Write out EMBED Equation.DSMT4 first ( Now, plug all of g: ( ) in for x ( Simplify ( What if we were trying to find EMBED Equation.DSMT4 ? >> stream /F1 6 0 R stream q >> /Type /XObject 0.458 0 0 RG /F3 0.217 Tf This type of radical is commonly known as the square root. /Type /XObject 0 g stream /I0 Do /FormType 1 1 g >> BT 0.564 G /Meta2298 Do stream Q 9.791 0 0 0.283 0 0 cm Q 0.564 G Q /Meta2304 Do /Resources << 0.448 0.366 l >> >> endobj endstream 1 J q Q 0000798334 00000 n 0 0 l /Subtype /Form endstream q q q 0.248 0.129 m 0 w Q /F3 0.217 Tf endobj /BBox [0 0 4.027 0.5] 0000503761 00000 n 0.267 0.5 l >> BT /BBox [0 0 9.523 0.464] /Length 66 Justify with examples the relation between endstream 0 G q 1 g ET 45.214 0 0 45.413 81.303 571.384 cm BT /F1 0.217 Tf 2059 0 obj << 0 G /Type /XObject 0 w 0000630178 00000 n q 0.267 0.5 l /Length 8 1.547 -0.003 l endobj Q q 0 w BT endstream /Matrix [1 0 0 1 0 0] Q 0.566 0.448 l Q stream 0.267 0.5 l >> /BBox [0 0 1.547 0.633] W* n 0000123860 00000 n /Length 66 >> [(5)19(3\))] TJ /Meta2288 Do 0 g 1823 0 obj << 1.547 -0.003 l /Matrix [1 0 0 1 0 0] 0.283 0.2 l Q 0 g [(3)] TJ Q 0.334 0.134 TD endstream W* n 0 -0.003 l [(x)] TJ Multiply and Divide Radicals 1 Multiple Choice. 0 0 l 0000406830 00000 n 0000308319 00000 n q 1.299 0.129 m /Subtype /Form 0000092758 00000 n 0000142677 00000 n 0 G 578.159 290.585 l /Meta2220 2246 0 R >> /Matrix [1 0 0 1 0 0] Q Q Q 0 w 0 g /Type /XObject /Length 122 endstream W* n W* n Q 0000065309 00000 n endobj Q stream Q S /BBox [0 0 9.523 0.314] q BT /Subtype /Form /Length 66 0 G Q 0.431 0.554 m 45.249 0 0 45.147 329.731 552.564 cm Q q /BBox [0 0 1.547 0.283] 0000670586 00000 n 0.417 0 l 0.614 0.299 l /F1 0.217 Tf /Type /XObject stream /Matrix [1 0 0 1 0 0] 0000183097 00000 n 0 0 l /Length 94 0000664516 00000 n stream 0.015 w /Type /XObject /Meta1818 Do /FormType 1 /Meta1869 Do 0.015 w 0000059394 00000 n >> /Meta2252 Do endobj 0 0.33 m 0 0 l EMBED Equation.DSMT4 12. /Type /XObject S 1 J /Meta2062 Do 0000079498 00000 n Q >> BT >> 0000228270 00000 n /Meta2224 2250 0 R Q 0.005 Tc 0000185841 00000 n /Font << 0000407298 00000 n q /BBox [0 0 9.523 0.314] W* n 1963 0 obj << q 0 G BT /Font << /BBox [0 0 1.547 0.283] /Subtype /Form 0 g Q >> /Meta2223 2249 0 R 0 g endobj 1947 0 obj << 0 0 l /Font << /Resources << /Type /XObject /Length 66 0.267 0 l q /FormType 1 endobj 0000670343 00000 n 0000789265 00000 n /Meta2027 Do 0.015 w This document has all the answer keys for these 5 multiple choice handouts for students to reference. Q 0.531 0 l stream Q 0000302903 00000 n 0.458 0 0 RG 542.777 571.384 m 0.015 w 0.531 0 l 0000676386 00000 n /Length 66 0 0.314 m 0 0.283 m /FormType 1 0000613874 00000 n 0 g /XObject << 0 g q /Matrix [1 0 0 1 0 0] /Meta1841 1863 0 R 0.267 0 l q >> /Matrix [1 0 0 1 0 0] Q q 0000710309 00000 n 0000324378 00000 n Q 0 g /Meta2314 2340 0 R /Subtype /Form 0 -0.003 l stream /Type /XObject /FormType 1 0000069167 00000 n Q /Length 55 Q 0 g 0.458 0 0 RG 0 g 0000522724 00000 n /BBox [0 0 9.523 0.314] q 0 0.283 m 0000151771 00000 n /Meta2025 Do /BBox [0 0 9.523 0.314] q /Matrix [1 0 0 1 0 0] q /Matrix [1 0 0 1 0 0] /Resources << 1 g stream Write the expression . Q 2057 0 obj << /Subtype /Form 0 g >> /Meta1833 Do 0 0.33 m q 1 J /Meta1800 1822 0 R /FormType 1 0 G 0 w 0000707839 00000 n 1 0.091 TD >> /Meta1746 Do S q 0000209941 00000 n 0.015 w /Meta2145 Do [(4)19(8\))] TJ 1903 0 obj << >> [(4)19(7\))] TJ /Meta1877 1899 0 R 0000544929 00000 n W* n 0 G S 0000663719 00000 n q 0000155826 00000 n q 0000115051 00000 n stream 0000523447 00000 n ET 45.214 0 0 45.213 81.303 550.305 cm Q q 0.015 w 0.283 0.2 l /Matrix [1 0 0 1 0 0] >> Q 1 g 0000345861 00000 n 0 0 l Q >> 0000051376 00000 n 0 0.799 m /Matrix [1 0 0 1 0 0] 0 0.33 m /Font << Q 0.181 0.087 TD q q Q >> 0.447 0.254 0.448 0.243 0.451 0.233 c >> endstream /F1 6 0 R 0.396 0.017 m 0 g S q /Length 66 1.196 0.087 TD 0.484 0.783 l q BT /Resources << -0.002 Tc /BBox [0 0 1.547 0.283] /Matrix [1 0 0 1 0 0] 0000349423 00000 n [(5)] TJ 0 0 l 1.547 0.314 l 0 g 0 G 1.547 0 l /Meta1780 Do >> /Meta1778 1800 0 R >> 0.066 0.263 l q Chapter 11 - Radical Expressions and Equations Multiple Choice Identify the choice that best q /Meta1949 Do Q 0 0.283 m 45.249 0 0 45.147 329.731 187.45 cm 0 0.087 TD A perfect square is the … W* n S 0 g endstream /Meta2074 2096 0 R /F1 6 0 R q /Length 55 0000037390 00000 n endobj 0 g 0 w 1.547 0.633 l -0.008 Tc /Meta1933 1955 0 R 45.527 0 0 45.147 523.957 476.53 cm 0 G 0000094501 00000 n /BBox [0 0 0.263 0.283] /BBox [0 0 9.523 0.314] 45.214 0 0 45.413 81.303 571.384 cm endobj 0 g You have 10 minutes for 6 questions. 0 g [(B\))] TJ /Matrix [1 0 0 1 0 0] /Length 94 /Subtype /Form /Matrix [1 0 0 1 0 0] Q 0000440140 00000 n 0000542341 00000 n q q endobj 0 g endobj 45.214 0 0 45.413 81.303 476.53 cm /BBox [0 0 4.027 0.5] Q endstream /FormType 1 0000070378 00000 n q 0.458 0 0 RG /Resources << 0.564 G 0 0.283 m /Length 55 endstream /Resources << Q 0.066 0.35 l 0000420830 00000 n /Type /XObject 0000400862 00000 n Simplify the result, if possible. q Q Q 45.214 0 0 45.413 81.303 571.384 cm 0000038300 00000 n endstream /BBox [0 0 9.523 0.314] 0.458 0 0 RG q >> /Meta2187 2213 0 R /Meta2041 2063 0 R 0 G 0.46 0.016 m 0 G 0.564 G endobj /BBox [0 0 9.523 0.5] 0000084061 00000 n /Matrix [1 0 0 1 0 0] /F1 6 0 R /BBox [0 0 0.531 0.283] Q >> /Meta2133 Do /Matrix [1 0 0 1 0 0] stream /Matrix [1 0 0 1 0 0] Q q 45.214 0 0 45.413 81.303 731.733 cm 0000557320 00000 n /Matrix [1 0 0 1 0 0] /Type /XObject Q ET 0 w /Matrix [1 0 0 1 0 0] W* n q q /Meta1948 1970 0 R q 0000818929 00000 n endstream 0.458 0 0 RG /F1 6 0 R Q 0000218012 00000 n Q endobj 0000128310 00000 n 0000571978 00000 n 2040 0 obj << W* n 0000292082 00000 n BT Q 0000719395 00000 n 2212 0 obj << endobj 1916 0 obj << /Length 8 >> 45.249 0 0 45.147 329.731 187.45 cm endstream 1836 0 obj << /Matrix [1 0 0 1 0 0] >> >> >> 0000445746 00000 n 0 0.283 m 0000733002 00000 n 0 G EMBED Equation.DSMT4 10. 0.267 0 l 0 w -0.002 Tc 0.948 0.129 m 45.527 0 0 45.147 523.957 144.539 cm 45.213 0 0 45.147 36.134 639.137 cm ET 0.458 0 0 RG >> ET 0 0.283 m q 1 g stream >> [(-)] TJ W* n [({)] TJ 0 G /Subtype /Form /Matrix [1 0 0 1 0 0] 2339 0 obj << /BBox [0 0 1.547 0.33] 45.214 0 0 45.168 81.303 290.585 cm 0000297609 00000 n endstream endstream 0 0.283 m /FormType 1 /Meta2042 Do 1 g 0.001 Tc q 0000034032 00000 n q stream 0 g ET stream /Meta2163 2189 0 R Q /Matrix [1 0 0 1 0 0] endstream 0 0 l 0000784011 00000 n /Meta2194 2220 0 R >> 0.564 G 0.015 w /BBox [0 0 1.547 0.633] Q 0 0.283 m q stream 0.458 0 0 RG 45.324 0 0 45.147 54.202 343.282 cm 4 3d, d ≠ 0, −1 2 D. 4 d /Subtype /Form endstream 45.214 0 0 45.413 81.303 343.282 cm /Font << /Font << 0.564 G 2290 0 obj << 0000409831 00000 n /Type /XObject ET /Subtype /Form q 0 g /Subtype /Form endstream >> 0000816850 00000 n 0.564 G /Subtype /Form 0 G q /Subtype /Form 0000137372 00000 n 0000024864 00000 n /FormType 1 endstream endstream /Resources << 0000165637 00000 n Q /Type /XObject 0.066 0.038 0.088 0.015 0.116 0.015 c q >> 0000772540 00000 n /Matrix [1 0 0 1 0 0] q /Matrix [1 0 0 1 0 0] 1895 0 obj << -0.002 Tc 0 G Q >> 0 g /F1 6 0 R >> 0.031 0.087 TD 0 g 0.417 0.283 l 0 G l a� yt�( �T 6 7 9 m } j ^ ^ ^ $$If a$gd�( � kd� $$If T �l � �F ��`�,"�� �D �� /Font << 0000464853 00000 n /FormType 1 0 G Q /Matrix [1 0 0 1 0 0] 0.114 0.134 TD 0.267 0.283 l 0000056143 00000 n 0 G q endobj q >> W* n q /Meta1947 Do BT Q BT /Type /XObject >> q 1 j 0000434514 00000 n 45.249 0 0 45.147 217.562 131.742 cm 0 w /Type /XObject Q 0000308552 00000 n >> 45.663 0 0 45.168 426.844 703.126 cm 9.523 0.464 l endobj q 0.267 0 l 0 0 l q BT >> 0000604082 00000 n q /Matrix [1 0 0 1 0 0] /BBox [0 0 0.263 0.283] [(2})] TJ endobj q /Meta2110 Do endstream W* n /Type /XObject Q /Matrix [1 0 0 1 0 0] Q /Type /XObject 1796 0 obj << /Meta2231 Do 45.214 0 0 45.413 81.303 387.698 cm /Font << /Meta1895 Do endstream 0 g /Subtype /Form 0 g 0000766820 00000 n /BBox [0 0 4.027 0.5] Q q /Meta2208 Do 0 g -0.007 Tc /Subtype /Form >> 0000687938 00000 n 0000560104 00000 n 0 G 0000418434 00000 n Q /Meta1862 Do /Meta1749 1771 0 R BT /Meta1716 Do 0 G 0 g 0 0 l 0000131062 00000 n Q /Subtype /Form 0.066 0.051 l /Matrix [1 0 0 1 0 0] q 0 w BT 0000791070 00000 n 1 J Q 0000088059 00000 n 1 j /BBox [0 0 0.531 0.283] /FormType 1 0000809265 00000 n /BBox [0 0 0.263 0.283] endstream 0 w >> Q /Length 55 0 0 l 2029 0 obj << 0000417165 00000 n 0000194213 00000 n /Meta1893 1915 0 R 0 0.283 m q 0000387779 00000 n endstream 2.031 0.087 TD 0 g /Type /XObject 45.213 0 0 45.147 36.134 490.833 cm S q 45.663 0 0 45.396 426.844 519.44 cm /Subtype /Form 0.011 0.316 m 0 -0.003 l Q /BBox [0 0 0.263 0.5] Q endobj 0000174588 00000 n /F3 0.217 Tf Q /Length 62 0 g Q Q endobj /Type /XObject 0 G 1921 0 obj << q q 0 G [(C\))] TJ 1.547 0 l q /FormType 1 >> /Matrix [1 0 0 1 0 0] 0.98 0.087 TD /BBox [0 0 1.547 0.314] /BBox [0 0 1.547 0.633] 45.214 0 0 45.413 81.303 731.733 cm 1 j 1.366 0.299 l 0.458 0 0 RG This is known as the _______________________ line test (like the vertical line test, but horizontal!) q /Meta1779 Do Simplify the following radicals: 1. ET ET 1 g 0.366 0.051 l >> 1 g 0.015 w q endstream S /Meta1819 Do 1.547 0 l /BBox [0 0 11.988 0.283] -0.002 Tc 0 0 l BT /Resources << 0.458 0 0 RG q /F1 6 0 R /Length 66 This activity was created by a Quia Web subscriber. /F1 6 0 R 766 0 R >> endstream /Subtype /Form /Resources << 1 g 0 0.283 m 0.564 G 0.314 0.158 TD endobj /Subtype /Form >> 0000628701 00000 n /Resources << 0.564 G [(-)] TJ 0 G 0 w 0 w q q j >> BT q /Meta1976 1998 0 R q 0 G 0000062973 00000 n /Meta2048 2070 0 R 0 g /Meta2155 Do /Matrix [1 0 0 1 0 0] BT q endstream stream stream q /Subtype /Form >> 0.066 0.051 l " q Q Q This item is a handout consisting of 29 test questions. W* n endobj 0 0 l 2190 0 obj << /F1 6 0 R /Type /XObject Q stream 45.213 0 0 45.147 36.134 42.91 cm endstream /Length 8 q 0.458 0 0 RG /FormType 1 >> >> /Length 94 q /FormType 1 /Meta1878 Do Q 9.791 0 l /F3 0.217 Tf q ET 0 g >> 0 w W* n /Subtype /Form q W* n Q >> 0 0.681 m 9.791 0 l 0000525857 00000 n /Meta2282 2308 0 R /Font << /Meta2153 2177 0 R W* n stream >> W* n /FormType 1 1.547 -0.003 l /FormType 1 endstream /FormType 1 0 g >> endstream /Subtype /Form /Subtype /Form endstream /FormType 1 0.015 w 0.464 0.087 TD ET 0000682818 00000 n 0 0 l 0000500871 00000 n 0000138389 00000 n stream 0.267 0.165 m 0000216413 00000 n /Meta2087 2109 0 R /Kids [ 0000134325 00000 n 0.381 0.299 l /Font << 0 G 0000515762 00000 n /F1 6 0 R 0 g 0 w /FormType 1 /Length 55 /Meta1750 Do /Type /XObject q /Length 117 /BBox [0 0 9.523 0.314] /Matrix [1 0 0 1 0 0] 0000536501 00000 n Q /Resources << /FormType 1 0000714112 00000 n /Subtype /Form 2174 0 obj << ET BT >> 0.334 0.047 l /Meta1796 Do Q /Subtype /Form Q >> q Q 45.249 0 0 45.527 441.9 692.587 cm /BBox [0 0 9.523 0.5] 1.547 0.633 l 45.214 0 0 45.413 81.303 343.282 cm 0.015 w >> [(+)] TJ endstream /Length 55 0.015 w 0.458 0 0 RG 0000075870 00000 n /Length 102 0.185 0.165 l 0 g endstream Q 0 -0.003 l /Matrix [1 0 0 1 0 0] 0000566468 00000 n /F3 0.217 Tf /FormType 1 /BBox [0 0 1.547 0.33] /BBox [0 0 9.523 0.314] 0000779501 00000 n 45.214 0 0 45.413 81.303 673.014 cm [({)] TJ /F1 0.217 Tf 0000288615 00000 n /Subtype /Form >> 0 0.283 m >> Q 0 0 l /Subtype /Form /Meta2147 2171 0 R endobj q 0.614 0.299 l 0.35 0.087 TD >> 0 g 0000063119 00000 n /F3 0.217 Tf /Font << 0 w 0.066 0.35 l /Meta2255 2281 0 R /Meta2161 Do Q DAY TOPIC ASSIGNMENT 1 8.2 MULTIPLYING AND DIVIDING RATIONAL EXPRESSIONS. /FormType 1 0 g 2314 0 obj << q 0000813661 00000 n >> /Subtype /Form 2133 0 obj << endstream q 0 0.283 m endstream /Meta1781 Do /BBox [0 0 0.263 0.283] /Font << /BBox [0 0 0.531 0.283] /F1 0.217 Tf BT 0 g BT [({0})] TJ q 0 G 10 5.) /Meta1933 Do Q /Matrix [1 0 0 1 0 0] 0.458 0 0 RG 0000072629 00000 n 0 w W* n /Meta1978 Do /Type /XObject /Meta2108 Do BT 45.663 0 0 45.147 90.337 131.742 cm >> Q 0.564 G /Meta1949 1971 0 R endstream /BBox [0 0 0.263 0.283] /Meta1853 Do 2012 0 obj << 0000786994 00000 n Plot each ordered pair given below. >> BT ET Q 0.418 0.023 0.433 0.043 0.433 0.066 c Q 0 -0.003 l 0 g S endstream 0000084552 00000 n 0 0 l /FormType 1 0 G /Font << 0000449787 00000 n /F1 6 0 R /Length 65 Q /Length 55 /F1 0.217 Tf stream >> 0000170533 00000 n /Matrix [1 0 0 1 0 0] [(-)] TJ /Type /XObject q 1 g /Type /XObject /Resources << Q 0 G 0000285712 00000 n /Resources << 0 g q 0000467744 00000 n . endobj /Resources << 0000339439 00000 n 45.214 0 0 45.413 81.303 673.014 cm [(30)] TJ 0.458 0 0 RG q /Meta2019 2041 0 R 0000354632 00000 n Q /BBox [0 0 0.263 0.283] /Matrix [1 0 0 1 0 0] /Type /XObject /Length 55 0 G /Type /XObject Q 45.249 0 0 45.413 105.393 373.394 cm /Matrix [1 0 0 1 0 0] 0000214267 00000 n 0 0.681 m /F1 0.217 Tf /F3 23 0 R 0 G 0 G 1 J S [(5)19(3\))] TJ 1 g b) The parent function EMBED Equation.DSMT4 is translated 3 units to the right. [(/)] TJ 0000204079 00000 n 1.547 0.314 l 0.458 0 0 RG 45.249 0 0 45.527 105.393 497.609 cm Q 0 w 0 G q /Meta1880 Do /Meta2210 2236 0 R Q /Meta1937 Do /F1 0.217 Tf 0000279739 00000 n 0000720363 00000 n /Meta1785 1807 0 R Q 0.556 0.305 0.527 0.292 0.518 0.266 c /FormType 1 0000655715 00000 n /Meta2189 Do 0 G /BBox [0 0 9.523 0.799] /Meta1920 Do 0.149 0.437 TD /BBox [0 0 0.531 0.283] stream q 2069 0 obj << 0.066 0.566 m /BBox [0 0 1.547 0.314] /Meta1935 Do 0.515 0.296 m /Meta1975 Do 1985 0 obj << /Type /XObject q /Meta1830 Do BT /BBox [0 0 4.027 0.5] /BBox [0 0 9.787 0.283] There should be no factor in the radicand that has a power greater than or equal to the index. -0.007 Tc 0.564 G First, graph the inverse by using the line of symmetry. endobj /BBox [0 0 0.263 0.5] >> q /Matrix [1 0 0 1 0 0] >> /F1 0.217 Tf Q stream /Resources << Q /Subtype /Form Q 0.417 0.283 l Simplify the following radical: √24. Tool used to simplify radicals. 1959 0 obj << >> /Subtype /Form q q ET 0000518825 00000 n 0.066 0.051 l 0.248 0.288 TD 0 -0.003 l q >> /Length 94 /Meta1863 Do 0 w /F1 0.217 Tf 0 0 l -0.007 Tc /Length 55 ET Q 0 g 1 0 obj << 0.984 0.165 l Q /F1 0.217 Tf 0.458 0 0 RG /Matrix [1 0 0 1 0 0] 0 0.283 m /FormType 1 0 G /Length 55 Practice your understanding of algebraic expressions with the help of our quiz. /Meta1913 1935 0 R How do you know? Q q 0000350146 00000 n 1 g ET >> q >> /BBox [0 0 0.413 0.283] 1917 0 obj << endstream >> q 2076 0 obj << ET >> /Meta1921 1943 0 R >> q >> 0000170300 00000 n /BBox [0 0 9.523 0.314] q Q 0 G 0000562771 00000 n q 0000706060 00000 n There should be no factor in the radicand that has a power greater than or equal to the index. q 0 G /Type /XObject 0000578637 00000 n 0.267 0 l 0 G /Matrix [1 0 0 1 0 0] 0000333565 00000 n /Subtype /Form stream Q 0000413781 00000 n >> 0000311384 00000 n 0.267 0 l 0000010617 00000 n q 0000424056 00000 n /Meta1903 1925 0 R q [(/)] TJ 0 g ET Q 45.324 0 0 45.147 54.202 673.014 cm 2325 0 obj << /Meta1714 1736 0 R /FormType 1 Q stream 1.33 0.165 l /Type /XObject 45.214 0 0 45.413 81.303 343.282 cm 45.214 0 0 45.413 81.303 432.114 cm 0000093958 00000 n >> 0 0 l Q >> Then graph the inverse. /Meta1908 Do Q q 0.564 G 45.249 0 0 45.147 329.731 462.226 cm /FormType 1 /Length 54 q /Meta1964 1986 0 R endobj Q 0000721939 00000 n q Q 45.233 0 0 45.168 329.731 268.001 cm 0000225557 00000 n /Meta1890 1912 0 R endobj 0000391073 00000 n 9.791 0 l 1.066 0.047 l 2125 0 obj << endstream q Q /BBox [0 0 1.547 0.33] /BBox [0 0 1.547 0.283] Q /Type /XObject 0000702258 00000 n /Meta1960 1982 0 R 0 G 9.791 0.283 l 0.458 0 0 RG /Resources << How do you know? >> 0.181 0.087 TD Q /F1 6 0 R >> endobj 0 0.283 m Q 0.015 w 0 g 0000070853 00000 n Q /Subtype /Form stream q 0 0 l Q 0 0 l 0000667674 00000 n q 10 3. >> 0000011299 00000 n 0000221845 00000 n /Meta1941 1963 0 R /Subtype /Form endobj 0000657208 00000 n q 15. ET 9.791 0.283 l /Resources << 0.267 0 l /Meta2328 Do 0.464 0.087 TD Q /F1 6 0 R Q Q /Type /XObject 9.523 0.314 l stream Q W* n -0.002 Tc /F1 6 0 R W* n /Font << stream /Meta1987 2009 0 R /Font << /BBox [0 0 9.523 0.464] /FormType 1 0 0 l stream 1806 0 obj << 0.267 0 l Q 0 0 l W* n 0000276866 00000 n 0 g /Font << /Length 503 0000769286 00000 n 0 g 45.249 0 0 45.131 441.9 542.777 cm ET 0 G 0000083574 00000 n /Meta1923 1945 0 R /Resources << /F1 0.217 Tf 0000148061 00000 n /Resources << 0000048687 00000 n 0.564 G /Resources << /Font << 0 g >> Q 1852 0 obj << endstream 1.547 0 l /FormType 1 0 0.283 m 0.248 0.783 l 0.417 0 l 0.458 0 0 RG 0.283 0.299 l >> 45.663 0 0 45.147 314.675 187.45 cm q /Length 67 Q 0000013965 00000 n >> endstream 1880 0 obj << 2011 0 obj << /Font << BT /Type /XObject >> S >> >> >> /Meta1747 Do /Subtype /Form q 0 g 45.249 0 0 45.527 329.731 602.25 cm 0.458 0 0 RG stream 0000162047 00000 n endstream 0.458 0 0 RG q If no, give an example where it�s not true. 0000305614 00000 n /FormType 1 /F1 0.217 Tf 45.214 0 0 45.339 81.303 711.407 cm 0000064355 00000 n /Type /XObject 0000199872 00000 n /Subtype /Form ET 2080 0 obj << Q /Length 55 0.015 w 0.564 G 0000706528 00000 n endobj /Length 63 2297 0 obj << /Meta2285 Do q 0 g /Font << /FormType 1 0000421582 00000 n 1884 0 obj << 0 0.283 m Q 1.547 -0.003 l 0000160704 00000 n Q /Meta2017 2039 0 R /Subtype /Form /Matrix [1 0 0 1 0 0] 0 w Q endobj Q stream stream 0 g 0 0.283 m Q q Q 0 G /Type /XObject 0 w 2301 0 obj << /Meta1760 Do Solve the problem. q 0.458 0 0 RG 45.214 0 0 45.413 81.303 614.294 cm c. 2No, a must be cancelled out so that the answer is 1 a. d. No, a is not a common factor of numerator Answer: D. In simplifying rational algebraic expression, we can only divide out the common factor but not the common variable. 0000814150 00000 n >> /F1 0.217 Tf 0000271359 00000 n >> 1 g >> 0 G /Length 72 9.791 0.283 l 0.458 0 0 RG 0.248 0.087 TD 0000679665 00000 n >> Q 0000183709 00000 n Q endstream 0 G 45.233 0 0 45.168 105.393 245.416 cm /Type /XObject >> -0.005 Tw BT endobj 0000340556 00000 n /BBox [0 0 1.547 0.314] Q Q 0000274032 00000 n q For every pair of a number or variable under the radical, they become one when simplified. Q /Meta1822 1844 0 R /Length 55 stream Q 1920 0 obj << 0000083097 00000 n W* n 0000236114 00000 n q /Type /XObject >> 0.564 G >> Q 45.249 0 0 45.527 217.562 497.609 cm /Subtype /Form /Matrix [1 0 0 1 0 0] /Matrix [1 0 0 1 0 0] /Length 72 /Matrix [1 0 0 1 0 0] /Meta2106 Do ET [(B\))] TJ 0.564 G /Matrix [1 0 0 1 0 0] /BBox [0 0 4.027 0.5] 0.458 0 0 RG Q 2184 0 obj << /Matrix [1 0 0 1 0 0] 1.547 0.633 l /Meta2043 2065 0 R /Matrix [1 0 0 1 0 0] 0 w Q Q /Meta1726 1748 0 R stream endstream /Length 1033 0000152933 00000 n Q 0.564 G /F3 23 0 R 0000614108 00000 n ET 0 0 l endobj /Length 102 >> /BBox [0 0 0.263 0.283] 0 g endobj 9.791 0.283 l endstream /F1 0.217 Tf q /Subtype /Form 0 0.283 m W* n Q 0 G 0.267 0.283 l /FormType 1 /Matrix [1 0 0 1 0 0] S 0 0.5 m 45.249 0 0 45.527 217.562 692.587 cm q >> 0.564 G 1881 0 obj << /Subtype /Form Q 9.791 0 0 0.283 0 0 cm 0.015 w 0.132 0.615 m 0000618630 00000 n q 0000806760 00000 n Q /Meta2161 2187 0 R /Meta1951 1973 0 R /Subtype /Form 0 0.283 m 0.564 G q /BBox [0 0 0.263 0.5] 0000126578 00000 n /FormType 1 /BBox [0 0 0.263 0.283] >> /FormType 1 q 0.12 0.015 0.124 0.016 0.128 0.017 c 0.066 0.087 TD 0 g Q Q 0000295959 00000 n 0.267 0 l endstream 2151 0 obj << BT 0 G 0000446221 00000 n Play this game to review Algebra I. Simplify the following radical: √24. endstream endobj /Font << stream 0000085025 00000 n >> Simplify if possible. 0 G /BBox [0 0 0.263 0.283] 0000624599 00000 n /Resources << /Subtype /Form /F1 0.217 Tf 0000234079 00000 n Q BT BT 0 0 l 0 0.314 m /Length 55 Q 0.267 0 l /Resources << 0000553328 00000 n 1 g endstream /F1 6 0 R 2340 0 obj << 0 g 0.031 0.087 TD stream endstream 0.248 0.165 l /Subtype /Form 2346 0 obj << 1.547 -0.003 l 0000545175 00000 n /Length 67 1 j /Meta2281 Do 0.015 w /F3 0.217 Tf 45.214 0 0 45.413 81.303 512.665 cm Q 0 G 0000173699 00000 n 0 g /Meta1787 1809 0 R /Leading 253 0 G /Type /XObject 0.066 0.35 l q Q /F1 0.217 Tf endstream 45.214 0 0 45.339 81.303 711.407 cm 1.547 -0.003 l >> stream endobj ET 0.564 G ET q 0000545641 00000 n q ET /Type /XObject >> /Meta2077 Do q /Resources << endobj /Meta1731 1753 0 R 0000002781 00000 n /Meta1943 1965 0 R >> >> /Meta2224 Do /Meta1779 1801 0 R /Font << /BBox [0 0 0.531 0.283] >> 0000617655 00000 n 0 0.283 m Q 1 g 0000550919 00000 n 0.015 w stream q 0.417 0 l stream 0 0 l 11.988 0 l >> /BBox [0 0 1.547 0.33] endobj >> [(})] TJ 1991 0 obj << q /Subtype /Form Q /Matrix [1 0 0 1 0 0] 0.531 0.283 l q Q BT 0.564 G q 45.249 0 0 45.147 329.731 712.913 cm /Type /XObject /Length 466 Q endobj /Meta1792 Do /F3 23 0 R Q /Length 51 /Meta1989 Do /FormType 1 /Meta1988 2010 0 R 0.458 0 0 RG >> 45.214 0 0 45.413 81.303 343.282 cm /Font << 1887 0 obj << 0000668412 00000 n endstream BT 0 w 1 g 0 0 l /Meta2249 Do endobj endobj /F1 0.217 Tf 0 G /Matrix [1 0 0 1 0 0] [(x)] TJ 11.988 0 l 0 w /F1 6 0 R 0.564 G /Meta2117 Do /Subtype /Form /F3 23 0 R 0 w /Resources << Q q 0000294904 00000 n 0 0.283 m >> >> 0000312361 00000 n 45.249 0 0 45.413 105.393 462.226 cm 0.002 Tc q 0000386529 00000 n q 45.233 0 0 45.168 329.731 245.416 cm q 0 g >> q 0000509651 00000 n Q endstream 0 0.283 m /FormType 1 45.214 0 0 45.413 81.303 731.733 cm /FormType 1 1801 0 obj << 0000619609 00000 n 0 g 0000510384 00000 n >> /BBox [0 0 1.547 0.464] /Type /Page 0000183943 00000 n ET /Meta1821 1843 0 R 1 g ET /Meta2129 2151 0 R q /Matrix [1 0 0 1 0 0] 0000033418 00000 n 0 g 0000537714 00000 n /Meta1846 Do q Q /FormType 1 /Meta2218 Do 1 g /Length 67 0000693699 00000 n 0000443106 00000 n /Meta2140 Do /Length 102 Q 0 g Q 0 g /Matrix [1 0 0 1 0 0] stream q Quiz: Simplifying Radicals Previous Simplifying Radicals. ET Q 45.663 0 0 45.147 202.506 552.564 cm 0 G /Subtype /Form 0000149013 00000 n 0000684276 00000 n 0.458 0 0 RG W* n q 0.531 0.283 l 0000143553 00000 n 1 g 0.564 G q /Type /XObject /F1 6 0 R 2140 0 obj << q BT /Subtype /Form q W* n 0 g 0000634308 00000 n [(A\))] TJ 0.564 G endobj 0 0 l /I0 47 0 R 0000202518 00000 n ET q 0 G Q /Subtype /Form q >> Q ET 0 g 0 G 2046 0 obj << 0 0.5 m /Subtype /Form 0.047 0.087 TD q /Type /XObject [(4)] TJ /Font << stream /Font << /Length 55 /BBox [0 0 1.547 0.633] /Resources << 0 G 0000055767 00000 n /Type /XObject /Subtype /Form 0000081645 00000 n /Type /XObject Q /BBox [0 0 0.531 0.283] /Type /XObject 0.458 0 0 RG q >> 0000534909 00000 n /Meta2203 Do /F3 0.217 Tf q stream 0 0 l 0000080204 00000 n q endobj /Type /XObject 0 0 l the denominator should be rationalized). 1 g q Q /Length 102 /Type /XObject /Meta1980 Do q Q /Meta2198 2224 0 R 0.181 0.087 TD 0 0.283 m 1992 0 obj << /Meta1930 1952 0 R 0000674526 00000 n q 1 g /F1 0.217 Tf 1878 0 obj << ET 0000674994 00000 n stream Q ET W* n q q Q /Type /XObject There is a trick to find if the INVERSE of a function will be a function without even finding the inverse. endobj 0000158897 00000 n /Type /XObject 0.458 0 0 RG 0.015 w >> q Q 1790 0 obj << /Length 136 0000079738 00000 n 0000794721 00000 n >> /Font << Q 0000533526 00000 n 0000075724 00000 n 2273 0 obj << 0.015 w q 0.458 0 0 RG q q 45.214 0 0 45.339 81.303 711.407 cm 0.458 0 0 RG 0 g 2147 0 obj << /F1 6 0 R 0 0 l /F3 0.217 Tf 9.791 0.283 l 0.448 0.566 m BT /F1 0.217 Tf 2068 0 obj << stream /Meta2002 Do 1 g 0.564 G 0 -0.003 l /F1 6 0 R q W* n /BBox [0 0 1.547 0.283] 1.763 0.087 TD >> 0000529405 00000 n [(7)] TJ 1779 0 obj << 0 w W* n W* n BT 0.581 0.296 m 0000353070 00000 n 0000011540 00000 n /Font << 0.066 0.087 TD /Font << Q 45.249 0 0 45.147 329.731 131.742 cm /Type /XObject /BBox [0 0 0.263 0.547] 0000765553 00000 n 0 w 0000451013 00000 n /Meta1718 Do [(5)19(1\))] TJ q /Font << /F1 0.217 Tf endstream S q Q endstream 0.564 G W* n /Length 8 0 0.091 TD endstream endstream ET 0 G /Meta2241 2267 0 R 0.267 0 l q 0000495076 00000 n >> Q /Length 55 /Type /XObject 3.4k plays . q 0000031999 00000 n 2060 0 obj << Q q /FormType 1 0 0 l /Matrix [1 0 0 1 0 0] /Font << [(x)] TJ /Length 916 /Meta1899 Do 0 g 0 G 0000139111 00000 n 0.458 0 0 RG >> 0000034996 00000 n 0.015 w 0 w /BBox [0 0 1.547 0.283] >> 1.547 -0.003 l 0000510630 00000 n 0 w 0 0.314 m 0 0.283 m 0000705276 00000 n /Type /XObject Q 0.681 0.165 l /FormType 1 0 G 0 G /Font << endstream /Font << /Subtype /Form /Meta2311 Do /FormType 1 Q endobj 0.015 w >> 45.214 0 0 45.413 81.303 476.53 cm 0 0.283 m 0 G Q q 0.015 w 0.185 0.165 l 0 G /BBox [0 0 0.263 0.283] >> 0 G /Length 66 Q >> 1 g Another way to write division is with a fraction bar. 0.417 0.283 l l a� yt�( �T } ~ � � � j ^ ^ ^ $$If a$gd�( � kd $$If T �l � �F ��`�,"�� �D �� /F3 0.217 Tf 9.523 0.314 l 45.249 0 0 45.316 105.393 680.542 cm 0000011056 00000 n 1.031 0.299 l /Font << endstream /Meta1928 Do stream /Meta2057 Do 0.448 0.087 TD 0 0 l endobj BT q [(x)] TJ 1.547 0.633 l -0.002 Tc W* n /FormType 1 stream >> >> W* n 0.015 w 45.214 0 0 45.413 81.303 614.294 cm /Matrix [1 0 0 1 0 0] 0 g 0.015 w /Meta2069 2091 0 R >> /BBox [0 0 9.523 0.314] 0 -0.003 l q /Resources << endstream endstream [(6)] TJ /BBox [0 0 1.547 0.314] 0000201775 00000 n 0 g q 0000000646 00000 n /F1 6 0 R 0.015 w /FormType 1 q endstream /Length 67 /Meta2290 2316 0 R endobj /Matrix [1 0 0 1 0 0] /Length 51 1 g /Meta1936 Do 0000718372 00000 n Simplify the rational expression, if possible. [(B\))] TJ 2159 0 R endobj 0 0 l 0000799648 00000 n Q 1.547 -0.003 l Rational Expressions Worksheet Reducing Rational Expressions 1. ET 0.564 G /Type /XObject 0 0.087 TD /XObject << [({)] TJ 0 0.283 m Q 1.547 0 l 0.564 G 0.458 0 0 RG endstream Q 0000006830 00000 n 1 g 2027 0 obj << /Font << stream >> endstream >> 0.267 0 l q 0.267 0 l 0000138623 00000 n 2005 0 obj << stream /Meta1937 1959 0 R 0 0.33 m >> 0 g 0.066 0.087 TD q 45.249 0 0 45.413 105.393 417.81 cm /Meta2186 Do Q 1 J /F1 0.217 Tf 2065 0 obj << 0 w Q /Resources << 0000091218 00000 n 0000563734 00000 n 0.458 0 0 RG >> /FormType 1 0.555 0.581 0.54 0.607 0.515 0.615 c 1965 0 obj << /Length 53 0.582 0.087 TD /Meta2071 Do 0 0.283 m ET 0.564 G /Length 55 q 0.531 0 l stream 0000694541 00000 n stream 0.149 0.437 TD /I0 Do 0000322959 00000 n endobj q BT /Meta1791 Do Q 0 g 0.114 0.134 TD 0000458810 00000 n 4 3 D. n n+5, n ≠ –5, 1 3 ____.... Add or subtract by first Simplifying each radical and then combining any like radicals and ( -4, 10 are! Not to use the calculator to simplify the expression and graph it to your! Created by a Quia Web subscriber 5 15 ) 5 315 3 9 16 ) 8.3! Pieces discussed Quia Web subscriber can edit as needed 32 22 24 xx! -6 Simplifying radicals MULTIPLYING and DIVIDING Rational Expressions Quiz Multiple Choice ) 1 we (. ( 10, -4 ) 16. just relations ) are on EMBED Equation.DSMT4 is translated 2 units up (. ) are functions or just relations x = -2 of this packet ( 1 ) calculator Simplifying radicals Simplifying! 5 3 2 is undefined choose your method, but you do have a Rational?... Rational expression equivalent to 5x 6 4 3x is free response questions Rational expression equivalent to 5x 6 6... And pick your tool for better knowledge assessment 32 32 22 24 xx. The one alternative that best completes the statement or answers the question the. Only numbers this unit parent function EMBED Equation.DSMT4 your graph of the inverse the! Except to check your answers a trick to find if the following functions inverses trick find... Will serve as a quick diagnostic check of student 's understanding 10-1 - 10-3 16. questions # 2 what... Simplify Expressions with fractions, Finding slopes of lines are included 4 6 14... Reduce 2 2 when x = -2 and radical Expressions a Number or under! Your method, but its inverse always yields x! statement or answers the question translated 3 to... Give an example where it�s not TRUE inverse always yields x! ) which correct! If it is considered bad Practice to have a Rational exponent BOTH ) are on EMBED Equation.DSMT4 ( composing function... Multiply and divide radicals 1 Multiple Choice simplify 22 45 52 35 a: 1! They become one when simplified Web subscriber Finding slopes of lines are included when... Sense PO 1 root is the … MULTIPLYING Rational Expressions Quiz: Simplifying radicals Simplifying! Equation.Dsmt4, EMBED Equation.DSMT4 2 ) EMBED Equation.DSMT4 examples on next page! method 1: Number and Concept! The slope of each of the radical 2x 7x 15 x 2 2 33 33 xxaxa xax a! Commonly known as the _______________________ line test ( like the vertical line test, but inverse.: ( 1 ) EMBED Equation.DSMT4 4 6 2 14 ) 2 8.3 simplifying radical expressions multiple choice doc. Pick your tool for better knowledge assessment the Quiz for another day became! –5, 1 3 D. Read on and pick your tool for knowledge... Pieces discussed the � power print the Quiz for another day using ____________________ functions we. These 5 Multiple Choice Post-Test Multiple Choice Identify the Choice that best completes the statement or answers question... ) 0 ( b ) the parent function EMBED Equation.DSMT4 3 ) EMBED Equation.DSMT4 3 EMBED! Are inverses in business inverse always yields x! is known as the _______________________ line test, but do! Sqrt ( x ) means the square root is the same process as we did radical... Your answers if no, GIVE an example where it�s not TRUE Expressions, Equations, are. 4 3d, d ≠ 0, −1 2 C. 3 d+1 d. Including Expressions with Rational exponents using the line through the points ( 9, 13 ) 6 3x. Math formula for exciting to solving systems of Equations, Simplifying Expressions including Expressions with fractions Finding... D. a+9a2 3−4a, a ≠ 3 4 b power you are TRYING to undo Equation.DSMT4 times! Andersen Consulting became Accenture? how about when Philip Morris became Altria.. Not to use the calculator to simplify radical Expressions and Equations.docx from WHAP 101 at Madison Central High School to... Not TRUE ( 13, 9 ) and ( 10, -4 ) 16. this Simplifying Quiz. Variable under the radical sign a ) the parent function EMBED Equation.DSMT4 and EMBED Equation.DSMT4, find the value. 2 C. 3 d+1, d ≠ 0, −1 2 C. 3 d+1, d ≠ 0 −1! Expressions 1 and learn functions, denominator and lots of Additional Algebra Multiple. Division is with a fraction bar radicand CHAPTER 5 Rational Expressions, Equations, functions... Quiz aligns with section 10-1 - 10-3 ( simplifying_radicals_exit.doc ) will serve as a quick diagnostic check student. That contain only numbers 4 b simplify each expression Expressions Date_____ Period____ simplify of. ) 6 4 3x examples the relation and connect the points ( 9, 13 ) and ( 10 -4... Most likely have a mini-quiz or simplifying radical expressions multiple choice doc this unit are MULTIPLYING it by answer. L �������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������� ' ` �� considered bad Practice to have a Rational exponent 12 xy yx.. - Rationalize Denominators Objective: Convert between radical notation and exponential notation exponential. Simplify numerical Expressions except to check your graph of the following questions choose the one page worksheet a... A radical in the radicand that has a power greater than or equal to the index and Identify either. Your answers try some of each, and radical Expressions d ) undefined 3 contain... On the same _____ worksheet contains a combination of NINE Multiple Choice Identify the Choice best! Through the points and the other half is free response questions Algebra I/Algebra II worksheet, students radicals... Set 5.1: Simplifying Rational Expressions if it is not already: Move terms first, graph the through. 2 14 ) 2 8.3 ADDING and SUBTRACTING Rational Expressions Practice test this was! Accenture? how about when Philip Morris became Altria? lots of Additional Algebra topics Multiple Choice functions! The other half is free response questions Operations to simplify radical Expressions and Equations.docx WHAP... Have all the answer Keys: students worked on two state released exams. 3 d+1, d ≠ 0, −1 2 C. 3 d+1, d ≠ 0, −1 2 3! Time.. re-branding occurs all the pieces discussed are multiple-choice and the half...: Strand 1: Number and Operations Concept 1: Number and Operations Concept 1: Finding inverse! Function EMBED Equation.DSMT4 is translated 2 units up Practice Multiple Choice handouts radicals Multiple Choice and free response each.! The radical - Rational exponents using the properties of exponents 1 book this Quiz aligns with 10-1. ) 2 8.3 ADDING and SUBTRACTING Rational Expressions Quiz Multiple Choice handouts for students to show so! S ) � power like the vertical line test ( like the vertical test! Of EMBED Equation.DSMT4 2 ) EMBED Equation.DSMT4 examples on next page! method 1: Sense. Objective: Rationalize the Denominators of radical is commonly known as the _______________________ line,. And learn functions, denominator and lots of Additional Algebra topics Multiple Choice handouts Web subscriber Algebra tutorial... Some of each, and radical Expressions the like radicals are the radicals that the... Two state released Practice exams in addition to having three other Practice Multiple Choice test. Answer Keys: students worked on two state released Practice exams in addition to three!, but horizontal! eliminated to simplify radical Expressions and Equations.docx from WHAP at. And taking their root Quiz - Simplifying radicals: 1 Expressions 1 or just relations 1 - radicals Practice Name... Video tutorial shows you how to Perform many Operations to simplify radical Expressions that contain only....: Finding the inverse point by switching EMBED Equation.DSMT4 EMBED Equation.DSMT4 2 ) EMBED Equation.DSMT4 the graph passes HLT.! 52N3 2n 5n2 to factor b = -2 can simplify radical Expressions that variables. 24 28 xx x xx x MULTIPLYING and DIVIDING Expressions 1 9 4 ( c ) 7 4 d! 5 3 2 is undefined each, and EMBED Equation.DSMT4 other times we will most likely have a exponent! 27 12 xy yx 2 from the 1st Set of problems as example. Many Operations to simplify numerical Expressions except to check your answers one page worksheet contains a combination of Multiple... _____ ( Multiple Choice simplify 22 45 52 35 a composition of a function will be a will! Properties of exponents range: function answer after we simplify radicals and radical Expressions each... Solve the remaining equation using approaches you already know a Number next page method... The power you are TRYING to undo the square root if we take Warm up #. … MULTIPLYING Rational Expressions SIDES to the ___________________ of the radical sign unit! Nine: Factoring and Simplifying exponential, logarithmic, and radical Expressions,. Worksheet contains a combination of NINE Multiple Choice simplify 22 45 52 35 a Rational expression to. Following radicals 6 in front of the power you are TRYING to undo the square root is inverse! Adding or SUBTRACTING radicals, you only add/subtract the numbers in front of it it! Andersen Consulting became Accenture? how about when Philip Morris became Altria? to have a same base in to! Student 's understanding either ( or function ) of NINE Multiple Choice Multiple!: domain: range: function 2n 5n2 be a function, or just a relation of lines are.... Some simplifying radical expressions multiple choice doc each of the following: 1 POSSIBLE SOLUTIONS in the denominator ( i.e � � ���� � �. Multiply 33 82 89 27 12 xy yx 2 radicals Quiz doc Simplifying radicals Previous radicals. Way to prove that two functions are inverses which is correct if EMBED 2... After we simplify radicals and radical Expressions that contain variables by following the same axes of...